
Technical Report 12

SOME ADD]TIONAL THEOREMS

FOR A NON-STATIONARY STOCHASTIC PROCESS

WITH A CONTINUOUS, NON-RANDOM, TIME-DEPENDENT COMPONENT

S Prepared for:

J44 ADVANCED RESEARCH PROJECTS AGENCY
THE PENTAGON CONTRACT SD.103 UNDER
WASHINGTON 25, D.C. ARPA ORDER 281-62
ATTN: LT. COL. KENNETH COOPE PROJECT CODE 7400

By: R. C. McCarty C. W. Evans HI G. L. Sutherland Z. W. Birnbaum

-. Px

14,0

-Z



! ,

April 1963

Technical Report 12

SOME ADDITIONAL THEOREMS

FOR A NON-STATIONARY STOCHASTIC PROCESS

WITH, A CONTINUOUS, NON-RANDOM, TIME-DEPENDENT COMPONENT

Prepared for:

ADVANCED RESEARCH PROJECTS AGENCY
THE PENTAGON CONTRACT SD-103 UNDER
WASHINGTON 25, D.C. ARPA ORDER 281-62
ATTN: LT. COL. KENNETH COOPER PROJECT CODE 7400

By: B. C. McCarty G. W. •vans II G. L. Sutherland
Mathematical Sciences Department

Z. W. Birnbaum
University of Washington (S.R.I. Consultant)

SRI Project No. 3857

Approved:

CARSON FLAMMER, MANAGER MATHEMATICAL PHYSICS DEPARTMENT

D. R. SCUCýH ECTDIRECO R ONCS AND F C0 SCIENCES DIVISION

Copy-No..3..



ABSTRACT

In Technical Report 4,1 t several definitions and theorems were

presented to aid in the analysis of a sub-class of non-stationary pro-

cesses consisting of a random component and a continuous non-random

function of time, each component defined over the same finite time

interval. This report supplements the results of Technical Report 4

both by extending the sub-class of non-stationary processes under con-

sideration and by including additional theorems.

fReferences are Ilted mt the end of this report,
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I INTRODUCTION

This report is divided into three sections. Section I summarizes

some of the results of Technical Report 4* Section II describes both

theorems that are n~atural extensions to those of Technical Report 4, and

extensions to the sub-class of processes considered in the above report.

'Section III indicates areas for further investigation. The approach

followed in the first two sections is to generalize or extend the power

spectral density function for stationary stochastic processes so that

it may be applied to non-stationary stochastic processes. That is, the

approach follows from a desire to obtain, from the observation of a

time-dependent non-stationary signal, the energy contributions at one

or more average frequencies. The time interval of observation is to

be sufficiently large that an energy contribution to an average fre-

quency may be extracted, but not so large that the process changes

appreciably during the time of observation. Thus, through successive

observations, the change in average frequency may be observed.

Consider a random process {Y(t)} consisting of an ensemble of member

functions y.(t), m = 1,2, ... , M, defined for the interval 0 < t < 2T.

For this process the autocovariance qj(T) is redefined as

DEFINITION 1

- E[A y (t y.(t+.)] - E [Ay (t]:E[(A y (t+ )]

where

TAy.(t) = lJ.(t~dt

0

T

Ay (t+1-) f y.(t + T)dt 0 < 7 < T

0



and

itY y t .7* y5(t)y.(t + -)dt 0 r < T1T

The power spectral density function O(w) of the process {Y(t)} is

given with respect to M(r) in the usual way except that the interval

over which the Fourier cosine transform is performed is finite, hence

DEFINITION 2

T

IM= f JC(r) cos nwrdr

where

WTT 2-n

The preceding definitions are applied to a subclass of non-stationary

stochastic processes represented by those processes {Y(t)) consisting of

member functions y 3 (t), m - 1,2, , M and tE[0, 2T] which may be rep-

resented by

y.(t) - 09(t) + f(t)

where 0.(t) is a member function of a stationary stochastic process

{8(t)} and f(t) is a deterministic function inducing non-stationarity

and is statistically independent of 0.(t). In particular, the ensemble

{Y(t)} is said to satisfy

Condition [A]

(1) 00(t) has c.d.f.t G(O.) with - < O < + • for every m 1,2, .. ,M

and each tE[0, 2T].

umulative distribution function is abbreviated c.d.f.
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,(2) E[0.(t)] - E[O.(t + r)] " EL[] O 6dG(O) < - for every x =

1,2, ... , M and each tc[O, 2T]. -D

(3) f(t)eL 2 where L2 is the class of square integrable functions.

*The following theorems have been proven in Technical Report 4.

THEonEM 1

Given an ensemble of member functions y,(t) - 00(t) + f(t) satis-

fy'ing Condition (A], then the autocovariance, '(P-), of the process is

separable into two components such that

tk( =) - 0,(,r) + kf,(T)

where

je 7-) - E[e(t)e(t + r)] - E2[0(t)]

and

f(r) = Af(t)f(t+.l) -A f(t)Af(t+r)

Theorem 1 shows that if f(t) 0, the autocovariance, 0(T) 0,(r),

is the accepted definition for stationary stochastic process. Similarly,

if 90(t)= 0 for all m and if f(t) is periodic with fundamental period T,

then the autocovariance, q/(r) - tkf(), is the accepted definition for

periodic functions,

THEOBEM 2

The power spectral density function, 4D(ncoT), for an ensemble of

member functions y,(t) satisfyixib •ondition [A] is separable into two

components such that

"Vwo) $Bn3oT + D (ncod

3



where

S1 T

q 0(n&) T) f0 9(r) COS n0T rdT
0

and

T

(D (nW,) f 0 COS n-TTdr

0

This theorem follows directly from Theorem 1 and from the fact that a

Fourier transform is a linear operation.

If in the preceding theorem 0Pf(T) a O-e.g., f(t) 0-.then

lim (nCor) x lim 00(n 0) f C•(- r) coScyrdr
T-OD T T-O WT 0 () -7TJ

0

is an acceptable definition for the power spectral density function of

a stationary stochastic process; and if 'O(r) B 0 and f(t) is periodic

with fundamental period T, then l(n4r) T •(n()T) represents a definition

for the power spectral density function of a periodic function.



II EXTENSIONS

Generally, in applications of power spectral density methods, an
additional condition is imposed on ensembles {Y(t)} satisfying
Condition [A] so that estimates of C(nwr) may be obtained from a single
member function y3 (t). The additional condition is one of ergodicity
and is stated as follows:

Condition [B]

For the random component 0.(t) of Condition [A]

M f T
] • Odg(8) -- E[O (t)] - lim - I 6(t lim (t)dt

M-o

E[N] . E[Os(t +r)] = lim- 2 0(t +r) - lim 0.(t +r)dtM-"M M=1 m{J~ +~t

E[O(t)G(t +)] 0 - (t)O(t + 7)dH[O(t), 0(t + 7-)] = E[0 (t)OL(t + r)]

HIM - 1 .).t - lim t ) t + -dl

where the time averages hold for each value of m 1,2, ... , M, and
.H1((t), 8(t + T)] is the joint c.d.f. of 0(t) and 6(t + T)

Applications assuming ergodicity imply that the frequency analysis
is derived from a single member function, indicating that an estimate
for 0b(r) must be used in place of Definition 1. Thus the following
estimates are defined:

5



DEFINITION 3

T
A
E[6.(t)] f (t)dt

+ T

A[ (I) T

E[O . (t + -01 = T f 0' ( t + 'r)dt

A T
E[OQ(t)Oe(t + 0)] = TJ f (t)O (t + r)dt

0

A A A
E[e (t)] and E[e (t + '0] are estimates for E[E], and E[O.(t)O (t + T)I

is an estimate for E[O8(t)O.(t + -r)] in the sense of Condition [B]. The ex-
A

pressions in Definition 3 permit an estimate for qb(r)-namely, (lr)--which

is given as follows:

DEFINITION 4

AA.(7) = Ay.(t)y.(t+-) - A Y (t)Ay tr)

and for the random component

A
l0' (r) = A ( t),0 (t+,r) - Ao ( t)Ao t+.)

A A
Note that tP (r) = P,(r). Using the expression for 0(-r), an estimate for

f A
the power-spectral-density, 4((nwrT), is given by Definition 5.

DEFINITION 5

A 1 T
T(nwr) = T f 0(r) cos nwTTdT

0

A
Because of Conditions [A] and [B] and Definitions 1 through 5, $ (nc) T is

an estimate for 4(nwT) in the sense of the following theorem.

6



THEOREM 3
l#KA

Let bM(nc) -T) W I (n ) ). Then for a non-stationary processM Tfi
{Y(t)} containing member functions y.(t) satisfying Conditions [A] and [B].,

lim {(D N(nWo)} . •YdnoT) +T (D (nlr)d] cos nwi)rdr

and by an additional limiting process

lir lir {D##(n&r)} = f(nco T) + (D(nw&,ý
NM-0 T-T 0

Proof:

By Definitions 4, and 5

T

Ao =1 "1 [A A,( cos1

S-y.(t)y.((t)t y(t + cos

S()at+Tr)dt +!Jf(t)f(t +Tr)dt +!jG(t)f(t +'r)dt

0

T 1 T T

i7 yI J6 (t + ,d Tyf(t)dt -. ( + rJ cos~d J O:cI
0 00

+- +~ + f(t + •(tdt(t)dt +f(t + d)dt

0 0 0 0

+ 1~ f O(t + r)ftdt fT (d ýt'-d
0 0 0~JL o Xja

T T T T

7



T

= {[Ae~t6 ~)- AO.( t)AO(t+T) +A Af( 0)f( t+r

T f on T,(tr
0

)= f T 6(t,)f(t + - T+

T T T

+- .+ J (t + R)f(t)dt s (t + T)dt f(t)dt

T 2 J

r T 7,

Now R(y.) has the following property as a result of Condition [B]:.

-"L -- EirTR y) cys ncos ndrldl

T LMo M= 1 y)J~

TT f T 2(

+ 0, ( t +r t)dt -, (t + 7r)dt f(t)dt

j T fT,

xT

TJ iT Z! f (tdt c os naoi-d'rfi0

A

Summing F.(ncoT) for m = 1,2.......M, and taking the limit as M - co, we
establish the irst part of the theorem-+i.e.,

T T 8



iiM - Ir 1
Me-,t M-•O0 M s

T
1. 5

" •(ncT) + i• f .j1, t 1r) cos noTr•dT

Now to consider the limit as T OD o we note that

1TT T

l!l'/e(7-)} =~ li 0(F (t)Oit + 7)dt ý-- ~(t)dt fO(t + r)dt
T-M M T. Ii f. 2 t

0 70 0

From Definition 3 this is equivalent to

mll {te (r)} lim {.,[6 (t)O(t + T)]- A[9 (t)]k[O.(t + r)]}

and by Condition [B] and Theorem 1,

A

lim {'P(T)},r E[O(t)8(t + -r)] - E2 [0]9 ) (-r

Now consider the limit as T m in the term

lir lim 4, (-r) } cos noird

t LTJO

ulrm f I jo(r) cos nr}rdM-0o T

= (D(n&oT) as a result of Theorem 2

Thus lim lim {(D(nco.r)} = (no + 'D.(ncO) and the proof of Theorem 3
M-10 T- 

C

is concluded.



As given by Theorem 2, D (n T)was defined with respect to the time
of observation, T; and the calculated frequencies are multiples

(harmonics) of the fundamental frequency, O T' However, suppose {Y(t)}

is stationary where f(t) is a periodic function with fundamental period

To - 27r/&)0 . It is then desirable to know the relation between the calcu-

lated frequencies and the harmonics of a0. Since

Cf(nwO) = fN(r) cos nobrdr

then

NTn

will exhibit the fundamental frequency, w0 ," when n - N, and will exhibit

harmonics or multip'les of co0 when n * 2N, 3N, 4N, ..... The notation qt#is shorthand for

OfN(r-) NT f(t)f(t + r)dt - f'
0 0

where

NT0  NTO

I - INT (t)dt NT f(t + T)dt
N0 0 0

The following theorem establishes a relation between the calculated and

actual frequencies.

THEOREM 4

For f(t) E L2, a periodic function with fundamental angular frequency

• and fundamental period TO,

lim {(D (noi T)} = fD

10



and

N2  (. ) , (ON + 2A)
(N f po)2 , 8I

f rT (N + 8)2 N M (N + •2

where

T (N + /3)To, N > 1, 0 < 13 < 1, andfM ox P.Or I

Proof:

T T T

Take Ofb(-r) - j f( t f(t + -)dt - f(t)dt f(t + -r)dt
T f T 2  f

00 0

We may write each integral in two parts, as follows:

NTo r

* 4J f(t)f(t +r)dt + f(t)f(t + -)dt

T f j~~f +~ ~ t T i ft+rd Jft+ d]

0 t•o

T 0 TO

NTO 11" NT0

NTO T

= +•N~o f(t)f(t + 7)dt -- + --f-' f(t)f(tf + N)dt

0 ~NTo0

- f + f(t)dt [NTof + f(t + 7)dt.

N 0  I NT0

11



T

-+ f + f(t)f(t + T)dt
N + I~ (N:+ (N 3)2 T "XTo

- (f (t) + f(t + -r)ldt + f(t)dt f (t + T)d

NTo To NTo J

I~f this expression is substituted for tp(T) in the definition of tf(nwor)

then

N
2  T

(n . . .. jg+Oo' + + COO/) (r) cos t'rdr
(N NNT8 ( +)

- TO

1 8 N Tf2 f(t)f(t + "r)dt

0 N +/1•)2 1NT

[N 7 ~f f (f (t +,) +f (t)]dt +f f(t)dt T +r)dt] cos nwird7
T2 NT0  NT0

Thus, since lim )6 = 0, taking the limit as T - NTo establishes the first
T" If T^

part of the theorem:

lira {( f(nwor) (D C/OJ

T•NT 0  T )

Next, consider upper bounds for each of the three last terms in the

expression for f(nco d

__N___ 1,NT f(t)f(t +,r)dt -2Csnw,7dr

(N + 13)TLT
TN+ 8)TJ I= 00

Nro

<_ N2  (N+,/6 T o 2-. n -Ct0  < 2,8N _ f2

(N + 8) NT0 IN+1 (N +'813)2 M

1 2 .



(N+,A) To

n/

I3N, 2 o Aw irv rd 1: IN f2Cos W j dr * 01T )2 -(N + j)'To N0 N

and finally

T f(t)f(t + r)
T _

-- NTf [f(t +r)+f(t)]dt +f f(t)dt f(t +r)td coo 1rr

0o NTO NT

(N(N+/)To ()To [(N +/To O+�)o fN f (N+A r. 2fdt

(N+B) To (N+,6) To

+ T fdt f fd cos - Oo" dr+(fN +,8)ro . r
o ITO NT T4

f[24+ f + f 1 f 2 (3Np + '82)
(IV+8)2 (N+,B) N (N+/3)2

Thus

S(nNwN) 2 ( -+ / < f 2 8(5N + 2,)
(N + 8)2  F+)2

andr Theorem 4 is proved.

A corollary to Theorem 4 gives the relations between t/J,(Tr) and

fif1(r), N = 1, and between 4Df(ncOT) and $1 (nco 0 ) where 0 < 7' < T0 . For this

investigation set T = yTO or wr w0o/y where 0 < y < 1. Remembering that

13



(') = T- f(t)f(t + T)dt -

0

where

TO T

i r f(t)dt = +L

00 0

then the corollary may be stated as follows.

Corollary:

For f(t) 2 a periodic function with fundamental frequency w0 and

period TO, then

lim Df (ncoT) = (I)f(nW 0)T-T 0o

and

@F(ncoT) - 4D fJ62)wo, 5f_(y -

where

max f(t) = max f(t + T) 'and 0 < 7- < T
0< t<0T< t< O 0

Proof:

r T T

IIJf(T) = -Jf(t)f(t + T)dt -I f(t)dt Jf(t + -r)dt

0 0 0

TO 0 y TO0

f f(t)f(t + )dt + f(t)f(t + -)dt

00

Tio VT0  1[T~o VT
] f(t)dt + f(t)dt f(t +7')dt + f(t +-r)d•

(To") 2  
0  Tr0

14



~ L yT 0

(7f+(T) f2- + f(t)f(t + Tr)dt
2V ITO fy2 To T0

TT0 T 0 'T 0
(YIo)2. To To o

Now since
SyTT

0  n°io

(D (nco) q-f(-rfV ) cos nco7:rdr = f Obf(-r) cos 0--rd-rf T?" f /'

substituting the preceding expression for q~f(r) into ?f (ncoT) gives

y T0  ( X YT 0

,(nw - fJf(T) + y f2 + f f(t)f(t + -)dt
T yT 0  2 yT0

1(io -- o YTO To M)t

-f [f(t +r) +f(t)]dt - f(t)dt f f(t+-r)dt.cos- -,Ir
S 2 TO TO (F.,o ) o I-TO, T

2 Of (Y O + -2  1 '/11j (,r) cos-y-- r rdT

' y 2 0 T 0

) eT T 0 1/T T 0 n co , 0
+ f(t)f(t + Tr)dt cos - -rdT

(YTo) 2 f f

r 0  T TO

f f [f(t + r) + f(t)]dt cos Td7-+

105



YTT T o0 YrT0o

(y 1 )3 VT f f(t)dt f f(t + )dt cos Y r-dr
09T. 0 To T~

and

lir (D f ( ncT ) D (nco
T- To

since limrn 1, and the first part of the corollary is established.
T- T

Next, congider upper bounds for the individual terms in the expression

for 4)f (noT)

Y°To 
0wo

fO "pf (0- .fot f"t +T)dt -f] oos -- -dr'

TooY ;T

".1 f T f no) 2d 1

<-- 2f Cos -T CT < 2 2f
727, 0 To

YTO TO Trvo, Y T0

Sf(t)f(t +-)dt cos-rdT < J (1-Y)Tof2 cos 'i- dT

( YTo )2 ro ( 2 f

0o 0

<(1 -y)

YT 2frO f fT

0~o 2fU - Y) 90 nwo
f f [f(t +-r) +f(t)]dt Cos - Td'r <_ - Cos - - d-

rY0 0 r. o .0

< -( -7) 2f 2
126

16



and for the final term

A T YOIO ' wJ3 f f(t)dt f f(t + c~t oil- TdT

((T0) • 2 jYT
- C)os -7n dr < f)2

y 3 T0  o 2 (
Y 0 0 1 Y

The proof of the corollary is completed since

0 f (nco.) -- L 41 n _0 2(1- Y) f2 7Y(1 -Y) f2 + 2(1 - 2 _ f21-

7 7.T T

< f2 (4 + y + 1 - 7) - 5f2 ( -)
- M 72

The power-spectral-density techniques are applicable to non-

stationary processes consisting of member functions which may be reduced

to the form y.(t) = 0.(t) + f(t). For example, consider a non-stationary

process {X(t)} consisting of member functions

x.(t) = X(t)g(t)

where X (t) satisfies Condition [B] and Parts 1 and 2 of Condition [A]

and g(t) satisfies Part 3 of Condition [A]. Then by setting

y,(t) - In x.(t)

0(t) - In X(t)

and

f(t) - In g(t)

17



the frequency analysis of the product x.(t) = X.(t)g(t) may be treated

as the analysis of the sum

In X.(t) + In g(t) = In x,(t) = yK(t) = 0.(t) + f(t)

providing the dominant frequencies of In x (t) are the same as those for

xz(t.). This restriction is stated mathematically for functions x (t),

observed for 0 < t < 2T, satisfying the following theorem.

THEOREM 5

Given x.(t) expandable in a Fourier series as

a 0  C a0
x (t) =- + Y a cos ncot + b sin nco,2 t = - [I + z.(t)]"2 n=i 2' 2

where the an and b. are random coefficients, a 0 > 0, co TT = 27T, and

Iz (t)j << 1, then the dominant frequencies contained. in the set nco2 for

n - 1,2, ... are in the same order for x.(t) and In x3 (t).

Proof:
a 0

Set In x=(t) = In - + In [i + z.(01

where

z(t) cos ncot + b sin

Since 1=z(01 < 1 and a 0 > 0, then In (1 + z (t)] may be expanded in

powers of z (t) and therefore

a 0  C O

In x (t) = In-+ - - -z(t)
2 n=1 n

The condition iz(t)I << 1 is used to imply that the first term of the

power series is the dominant term:

18



In x(t) I In -+ z.(t)
2

a 0 2 co
In- +-[ Z a, cos ,mt + .  sin no1t]

2 a0  .1I

which provides the same ordering for the magnitudes of the a 2 ' b2+ 01,

for In x (t) as for x.(t).

Thus the analysis of x (t) = k(t)g(t) may be performed on

y.(t) - In x 0(t) - 0.(t) + f(t) by the usual methods of taking the

Fourier cosine transform of the autocovariance of y.(t). This is true

because the choice of co . 27T/T for the fundamental frequency of g(t)

carries over into the analysis, since g(t) and f(t) = In g(t) both have

the same fundamental frequency.

Note that the condition z.(t)[ << 1 is equivalent to

-- >> ( 2 +b2
2 n n

That is, the dc component of the signal must be greater than the maximum

amplitude of the sum of the non-dc component of the signal so that the

.logarithmic transformation produces a real function which is physically

interpretable.

19



III ADDITIONAL THEOREMS

Consider a periodic function f(t) with fundamental frequency ac0

and period T. which is expandable in a Fourier series- i.e.,

P(t) + a. cos n&ot + b sin nwot
2 ~i

The frequency spectrum of f(t) may be obtained from the product of the

finite Fourier transform with the finite conjugate Fourier trans.form.

That is, as the finite Fourier transform is defined by

To
if We .•od

F~h•°) T--- ft d

00

and as the finite conjugate Fourier transform is: defined by

T 0

F*(n(o) f(t)e*'nw°tdt

00

the frequency spectrum is given by

a 2 + b2

IF(nw0 ) 12 = F(nj)F*(nw 0 ) = 4--

For periodic functions f(t)eL2, IF(n. 0 ) I2 = Of(nfco) when If(n&J0 ) is

evaluated for f(t) observed over the time interval 0 < t < TV However,

IF(nw,)12 is functionally different from C(nw0 ), and other methods of
calculating the frequency spectrum of f(t) may be investigated (differing

from the power-spectral-density function described in the previous

sections). It is hoped that these methods can be extended to non-

-stationary stochastic processes {Y(t)) satisfying Conditions [.A] and

[B].

20



Consider a theorem which parallels Theorem. 4. That is, let f(t)

be observed for 0 < t < T where T - (N + 8)TO, N > 1 and 0 8 < 1.

.Again, define co2T = 2T and let

T
F(nw,) f f(t)e 'rtdt

0

and

F f(t)e-'""nTrdt
F* (n ar)d

0

Further, since
To

F~nwo) f f(t)e'"'Otdt

0

then

NTo
F ,n f f N f(t).ei~ l .)-0 td

0

Similarly,

NTo

F* ) = -- f(.t)e dtNT

and the following theorem is stated and proved.

THEOREM 6

Given f(t) periodic with fundamental frequency com and period T.

and given f(t)EL2 for 0 < t < T, then

IF(n- r)F*(nw r) +._•) 2  _ ) F -n-(4N + ) f)

+ +(N + /)

21



where

4f " Max (,If(t)l)
O<t<T0

Proof:

Substituting

inedw te = cos nwTt + i sin nfl),t

and

e T = cos nc.ot -i sin nWf t

into F(nwT)F*(ncor) gives

F(nw)F*(n) f(t) cos nortdt + f (t) sin nCoTtd

nco. 0t 2

+ (N +")T" ~f(t) cos N dt

NT 0  
N+8+/

+ 1 (NTO nWot

[7 +8)To f(t) sin dt

W+N3+T)nT0 t 1

+W 1 JNTo n WOOt

(+ 1 [of(t) sin - dt
(N + N)T0  N +s 8•-

2 TO

22



F(nwr):F*(nWT) N2 F F( - 8 .(N.+ )

NI 1+,) O n~ot d 2

+ ~ f(t) Co N[(N + M)To ft •o N +-----•
NTo

StoT ( fNt)T i ncoo t dt2

(N+ [7 )of(t) 1 8N + 83
NTo

+ Fl NTO w t

+ 2 [N;+3)To f f(t) Cos N - dtj

0

r ••r n~t ot 1t

IL( +/3)T 0J Tono
0 f(t) No - dt

LN + 2 )T f f(t) sin _ -"t-

N TO
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By Schwartz's inequality

N (*+ TT) rco t 12

S• NT0

--) (N + /3):To [f(t) d co d/)oON+•

NC To f 0 
N TO

and

( 1 1 ) 2 . + /3 ) T0 N T o f ( t ) s i n . - d

( N . N+Toift)=,

[ýN .+/3)T 0 f Ns+ 2

- NT 0  t

Thus,

(1)2 +(II)2< N < (N/+3)o T f 2 tdt +f 1 )To (N )T0  dt]

NT0  0 NT 0

Since

n (•o t < s i n n -)o t < i

Icos N -+ <1 N +'P

and

If(t)l _ , ,
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"then,

1F 1 7 Tf f(t) con d,. f , (*) cos dt

N + 0 0 N + Ao N+ )To ,N 8

+ 2 ~ f( O ý min .-- -• d ý

(1 (N+4T 0  A
[( T J f(t) sin 0 d 4f2 4f N

N +/ A - (N + )2St0

and

IF(r ,)F*(n w,)T N n W )n

.5 f,2 W(4N + A)

As in the case of Theorem 4, a corollary to Theorem 6 exists. The

statement of the corollary follows without proo'f since the proof parallels

that for the corollary to Theorem: 4.

Coaro el ary:

Given f(t) periodic with fundamental frequency wo and period To

and given f(t)eL, for 0O< t I T, then

IF) L((F* ) -7 '2)(5 -v)

where

.f, Max {If(t)l} T y.

25



and

O< Y<I

For stochastic processes, consider the process (Y(t)) containing

member functions y.(t) - 09(t) + f(t) satisfying conditions [A] and

[B] as before; and define a sample function g=(t) as follows.

DEFINITION 6

Let a sample function g.(t) be constructed for each member function

y,(t) by.

g.(t) - y.(t) - Ay,(t) , 0 ) + f(t) - [Ae (t)+ Af(t)]

a[(.(t) -'Ao 9 (,] + [f(t) A f(t)]

where

A 1 T y3 (t)dt

Y T
0

r

A9 5Furie trnfr of g,(t)d fr0•t•Tadfr0()L n

6

Aj f(t)dt

0

Thp Fourier transform of g.(t) for 0 < t < T and for 0.(t)EL2 and

fie2is given by
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T1'
F.(n) = " g.(t)e i•Tr

0

T T
f [ (t) - A,(t)]e 'dt +-- [f(t) Af ])e .nCrtdt

0 0

where toT 27T; and, similarly, the conjugate transform is given by

T

F*(n) Ig.(t)e . i Ttdt
T Jf

0

T T

f1[0 (t) 7e A, rtdt +'-- [f(t) A ]e"'rtdT A0t) T Lt)-A 'dt

0 0

The expected value of the power spectrum is given by the mathematical

expectation of the ensemble of the products of the Fourier transform of

each stochastic member function with its conjugate transform-i.e.,

E[IF(n) 2 ]' = E[Fr(n)F*(n)]

T T"0.(t) cos ntd - 2 i0 t) cos nwtd).
cos 17,O

0 0

T T 2

(t) osn 7 t}2{I{A( cos nco 7 tdt}2

co sna)t + ITA&G(t) snn)Tt}
0 0

+ E 00(t) sin nltd - 2f T sin nwrtd}4

T T 0
• 0 (0) sin no) tdtJ + f A sin nw rtdt

T T 0 (t)

T 2 T 2

0 0
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Since E,[0.(t)0 E[A6 (t)], the preceding expression reduces to

EIIF(n)12] E [f, JT Most COB tl 2~ E 2[0.(t)]{kJf cos nw~'rtd} 2

0 0

[ 1  i ''r 2 T 2

+~ ~ E 2t)tt 00 i E(~~ sin FwyTdt}
0 0

[ { f(t)-A 1 (1 )] CBos mortdt}

0

+ {4J[f(t) A()] sin roytdt}

0

Next, consider

E (0 co Wtdtj21 E [I f r fr u06. T) (cos ,Mvd.t(cos Trý] dtdT]

T2

=E[O2t)] {fn)t}

0

and, similarly,

E T ( t sin nco rtdt } 2 E[0 2 (t)] fT sin n2o tdt,

0 0
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Thus,

E(IF(n)1
2  

- [f.1T + Cos T1 2
tdt} 21 IIE[02] E2(0]

o T

T 2

+ {f(f W --A,,,f )]O Cos tdt}

0

+ {f [f(t) W A,,,)] sin 2:Ttdt

T
Finally, since w T T' 27r •

1 r for n 0-- f CO n•~td t fl

T0 for n >10

and
T

1 sin noTtdt = 0 for all n

and the following theorem has been proved.

THEOREM 7

For the sample functions of Definition 6, the expected value of

the power spectrum is separable into a stochastic component and a

deterministic component-i.e.,

I F(n)12 IF012 + IF (f)12

where

1 12 _ E o 2 ] - E[] for n = 0
= 0 for n > 1
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and

2

IF, (0)12  f tj [f(t) - A,)] cos nW Ttdt}

fT2 0

+ T f(t) - Af(t)] sin ncoTtdt}

0

The result stated in this theorem is to be expected since f(t) and the

0(t) are statistically independent.

In the following discussion, possible extensions for the use of

transform methods are considered for the analysis of non-stationary

deterministic functions f(t)EL2. For example, let f(t), 0 < t < TO)

be defined by

f(t) c a Cos [&o(t)t] - O0cos Woot +

where

T ~ 0 (+ and CO TO 27r

Define a transform by

I f o , i "00 1o (t+T)dt l c o wo ( t2_• ) i " o( t 2

and a conjugate transform by

F n 0  t~[cs ((,,r1
-I" F* (n) = fte T- °a°os [Co. + e - dt

Tot To \ To

Substituting

COs 00 + T 2 + e (
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in F(n) and F*(n)gives

o . fr o0 i(n+l)w to !(t+2r
F(n) e t +-j ' dt

0 To 0t
0

and i<noo ro ,]n I)jo _
F*(n) = F + o eTO T

2 LT0  + T0 fo dtj

Completing the square in each exponent,

t 2 t 2 To To 2 To
t
2  ~'0 '0

T4 4

then

2 + 0 \2 ) To

e = e e

b d
F)ei+/ e 2t . e .2 1r 2
2T 2) ,t(n + l) j °edF ° j e je e

and

(t [ ni(n+l)7r/2 b -02 ei(n-1)7r/2 2
F*(n) - [__ __ e0 dO + e-0 do]2 ['27n(n + 1)f J 27(n1)

3 c
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where t

aa = -- '2nr(n + 1).
2

S3
b -- /2-;T(n + 1)

2

1
c 2 -- 27T(n -1)2

and

d 3 V2i-"r(n - 1)
2'

Thus,

rto b
F(n)F*(n) - 0 _ _1 [cos 92 + i sin 02]) [COS 02 - i sin 0

2]dO4 1 7(n + 1 ) Jj Oa a

fbe ,d e-"°2d8 + e e- df

a a C

d d
+ 1 (cos 92 + i sin 02]do [COS 092 i sin 92]dO

27r(n -1)
c C

Finally, it can be shown that

a2  b d2
F(n)F*(n) = jCOs 0 d6: - do 9 2 "

a C

+ bn2 d fd s 2d]} n>1
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That is, this extension to a transform permits the calculation of

IF(n)12 for the function f(t) = a0 cos W(t + t 2 /T,)] in terms of

Freanel integrals.$

To see that P(n) may be interpreted in terms of a Fourier trans-

form consider

+ fTftenwT (+ n 2)T

0

where wc is a constant. Then, we may write

FM f f(t) e t 2 dt = f(t)[cos Wct2 
+ i sin wit 2)e X"'t dt

0 0

By setting

"x(t) = f(t) cos wit2

y(t) - f(t) sin v1 t2

and

z(t) x(t) + iy(t)

then

F)t ) t dtTnT

0

and F(co) is the Fourier transform of the complex function2 z(t).

The preceding analysis suggests considering finite transformations

of the form

F(a)) f - f(t)eD()dt

0

t
For n i, c d and two of the integrals in F(I)F(I) are zero. For n 0, F(0)Fi(0)=(• rr (t)d)2.
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where

P c6
PN) O t + I P tp

p=2 nO)0

The w, are constants to be adjusted to find a "best fit" with non-P

stationary functions f(t), 0 < t < T, for a series similar to the Fourier

series. As a first step in this direction, the function F(n) is shown

to be the Fourier transform of the complex function z(t) = x(t) + iy(t)

where

z(t) O f(t) exp, 6o0 t - f(t) [cosp opt + sin (12 6 wt)

= x(t) + iy(t)

For f(t)EL2, 0 < t < T,. the Fourier transform is represented by

11J =-• z(t)e inwrt dt

and a sufficient condition for the existence 3 of F(co) is that

-- T (t)'ldt < c

T

Consider the modulus of z(t),

Iz(t)I os () 6 c + i sin Y_ tv co 2 60(-cs p=2 P P2 P Ico (P2 t

Ths since fPtEL2, Iz(tOlEL2 and the transform exists. The existence

of F*(co) is demonstrated in a similar fashion. 3
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